# THERMAL BEHAVIOUR AND S-O BONDING STATE OF ALKALINE-EARTH METAL SULFITES

#### M. Ishihara, H. Matsui and G. Hashizume

### HYOGO PREFECTURAL INSTITUTE OF INDUSTRIAL RESEARCH, 3-1-12, YUKIHIRA-CHO, SUMA-KU, KOBE, 654 JAPAN

The thermal behaviours of magnesium sulfite, strontium sulfite and barium sulfite were investigated in the atmospheres of argon and air. the thermal behaviours of magnesium sulfite were different from those of the other two sulfites. The oxidation of magnesium sulfite in air does not occur.

The bonding state of the  $SO_2^{2-}$  in each sulfite was compared. The  $SO_2^{2-}$  in magnesium sulfite was coordinated through the sulfur, while those in the other sulfites were coordinated through the oxygen.

It appears that the difference in thermal behaviour between magnesium sulfite and the other sulfites depend upon the difference in bonding state of the  $SO_3^-$ 

Keywords: alkaline-earth metal sulfites, S-O bonding state

#### Introduction

Several experiments were carried out concerning the thermal behaviour of alkaline-earth metal sulfites [1-6] using thermogravimetry (TG), differential thermal analysis (DTA) and infrared absorption spectroscopy (IR). Lutz and Suradi [1] reported that strontium or barium sulfate and their sulfides were formed from their sulfites at high temperature. Saeki, Matsuzaki, Kobayashi and Masumizu [2] studied the reactions of magnesium sulfite at 450° to 800°C by X-ray diffraction measurements of the products formed at high temperature.

Thus far, the effect of atmosphere on their thermal behaviour and chemical bonding of the products obtained by their heating have only been slightly studied. Because the chemical bonding of their products changes with thermal reactions in different atmospheres, the thermal reaction mechanism might be clarified by studying the chemical bonding of each reaction product. In a previous paper, the changes in the S-O bonding state of calcium sulfite hemihydrate (CaSO<sub>3</sub>·1/2H<sub>2</sub>O) was studied by its thermal reaction. It was found

> John Wiley & Sons, Limited, Chichester Akadémiai Kiadó, Budapest

that the S–O bonding state of the thermal products in nitrogen was somewhat different from that in hydrogen, and that its thermal behaviour in nitrogen were different from those in hydrogen [3].

In this study, thermal behaviours of magnesium, strontium and barium sulfites were investigated in the atmospheres of argon and air. Further, we investigated the S–O bonding state of each sulfite and sulfate formed by the thermal reaction in order to study the correlation between each thermal behaviour and S–O bonding state.

#### Experimental

#### Preparation of alkaline-earth metal sulfite

Guaranteed reagents of each alkaline-earth metal nitrate and ammonium sulfite monohydrate were used. Water as the solvent was purified using the ion-exchange resin and distillation method. An aqueous solution of the alkaline-earth metal nitrate was mixed at room temperature with an aqueous solution of ammonium sulfite using a magnetic stirrer (600 rpm) in flowing nitrogen (N<sub>2</sub>). The concentration of each solution and reaction times are shown in Table 1. The volume ratio of each solution was 1:2 for the strontium sulfite preparation, and 1:1 for the others. The resulting precipitates were filtered off, washed with water, methyl alcohol and diethyl ether, and then dried over silica gel in a desiccator.

|           | Concentration of each solution/<br>mol·dm <sup>-3</sup> |             | Reaction time/<br>h |
|-----------|---------------------------------------------------------|-------------|---------------------|
| Sulfite   |                                                         |             |                     |
|           | Ammonium sulfite aq.                                    | Nitrate aq. |                     |
| Magnesium | 0.5                                                     | 0.5         | 332                 |
| Strontium | 1.0                                                     | 1.0         | 3                   |
| Barium    | 0.2                                                     | 0.2         | 38                  |

Table 1 Concentration of the solution and reaction time for the preparation of each sulfite

The products analyzed by their X-ray diffraction (XRD) showed that the magnesium salt and strontium salt prepared in this experiment were MgSO<sub>3</sub>  $6H_2O$  and SrSO<sub>3</sub>, respectively, and that the barium salt was characterized as  $Ba_x(SO_3)_z$  with ASTM350869. We could not prepared a pure sample of only BaSO<sub>3</sub>.

### Measurement of TG and DTA curves, XRD, infrared absorption spectra and mass spectra

TG and DTA measurements of each sulfite were carried out under flowing argon gas (Ar)(200 ml/min) and flowing air (50 ml/min) using a MAC Science TG-DTA 2020 and Rigaku TG-DTA, respectively. The weight of the samples was about 10 mg, and the heating rate was 10 deg/min. Mass spectra were taken using the electron impact ionization method with a quadruple mass spectrometer VG Gas Analysis connected to a TG-DTA 2020 to detect gas produced in the argon atmosphere. Ionization potential was 20 eV, and mass number was detected between 10 and 100. The samples were cooled to room temperature after heating them in air to each required temperature, and then the XRD and IR measurements were carried out. XRD patterns were taken using a Rigaku RU-300 X-ray diffractometer. IR spectra were measured by the KBr disk method using a Nicolet 20DXB Fourier transform infrared spectrometer.

#### **Results and discussion**

#### Thermal behaviour of MgSO<sub>3</sub>·6H<sub>2</sub>O

TG and DTA curves of MgSO<sub>3</sub>· $6H_2O$  in Ar and in air are shown in Fig. 1. These are in good agreement with he results obtained by Lutz *et al.* [7] and Saeki *et al.* [2].

In Ar, a large decrease in sample weight was observed below  $200^{\circ}$ C, which corresponds to the removal of water, and the DTA showed an endothermic peak. The evolution of H<sub>2</sub>O was also identified by mass spectrometry. Thus, as previously mentioned [2, 4, 5], the thermal behaviour is determined as the dehydration of water in MgSO<sub>3</sub>·6H<sub>2</sub>O (Eq. (1)).

$$MgSO_3 \cdot 6H_2O \rightarrow MgSO_3 + 6H_2O \tag{1}$$

At the same time, the evolution of sulfur dioxide  $(SO_2)$  was observed in the mass spectrum (Fig. 2). Accordingly, the decomposition of MgSO<sub>3</sub> (Eq. (2)) appeared to occur in the following way.

$$MgSO_3 \rightarrow MgO + SO_2$$
 (2)

In the temperature range of 200° to 550°C, the sample weight decreases in two steps. It is about 27% of the total weight loss. The overlapping peaks (an endothermic peak and an exothermic peak) are observed in the DTA curve. It appears that a few other reactions occur simultaneously. Saeki *et al.* [2] considered



Fig. 1 TG and DTA curves of MgSO<sub>3</sub>·6H<sub>2</sub>O a) in Ar, b) in air

the thermal decomposition process of  $MgSO_3$  in Ar, and reported that reaction (2) occurred below 250°C and reactions (2), (3) and (4) occurred below 300°C.

$$4MgSO_3 \rightarrow 2MgSO_4 + MgS_2O_3 + MgO \tag{3}$$

$$MgS_2O_3 \rightarrow MgSO_3 + S$$
 (4)

On the other hand, Wittich [6] claimed reaction (5) appeared to be the total reaction for reactions (2), (3) and (4), in the temperature range of  $210^{\circ}$  to  $250^{\circ}$ C.

$$5MgSO_3 \rightarrow 2MgSO_4 + 3 MgO + 2SO_2 + S$$
(5)

Expected weight loss due to reaction (5) is about 24%, which agrees with the value shown in Fig. 1. Thus, reaction (5) may proceed in this temperature region. At about 850°C weight loss is approximately 1% and the mass spectrum shows the evolution of SO<sub>2</sub>. It seems that the decomposition of unreacted MgSO<sub>3</sub> (Eqs (2) or (5)) occurs at such high temperatures. The TG and DTA cur-

J. Thermal Anal., 38, 1992

ves in air are similar to the ones in Ar. These results imply that the thermal behaviour in air and in Ar are similar to each other.



Fig. 2 Mass spectrum of MgSO<sub>3</sub>·6H<sub>2</sub>O in argon ---- : H<sub>2</sub>O (mass number = 18), ---- : SO<sub>2</sub> (mass number = 64)

Figure 3 shows XRD patterns of the thermal products of  $MgSO_3 \cdot 6H_2O$  in air. Only a broad amorphous pattern was observed up to 400°C. This suggests that only an amorphous product was obtained up to 400°C. At 440°C, crystalline



Fig. 3 XRD patterns of the products obtained by heating MgSO<sub>3</sub>·6H<sub>2</sub>O in air to indicated temperature a) 400°C, b)440°C, c) 480°C, d) 535°C, e) 830°C o: MgSO<sub>3</sub>, □: MgO,
•: MgSO<sub>4</sub>

reflections appeared with the broad amorphous pattern. This suggests that not only an amorphous product but also MgO crystals are formed.

At 480°C, several crystalline peaks were observed, corresponding to the formation of MgSO<sub>3</sub> and MgO. The peak intensities corresponding to MgO became stronger than those at 440°C. These facts suggest that amorphous MgSO<sub>3</sub> is partly crystallized and at the same time, it also decomposes to MgO. The exothermic peak at 469°C and the endothermic peak at 495°C may be attributed to the crystallization of MgSO<sub>3</sub> and the decomposition of MgSO<sub>3</sub> to MgO, respectively. Saeki *et al.* [2] also reported an exothermic peak at about 460°C on the DTA curve of MgSO<sub>3</sub>·6H<sub>2</sub>O in Ar, and concluded that it is due to the crystallization of MgSO<sub>3</sub>. From the mass spectrum experiments, the evolution of SO<sub>2</sub> at about 460°C decreased because the decomposition could be inhibited by the crystallization of MgSO<sub>3</sub>.

At higher temperatures, the amorphous pattern was again observed, in addition to the crystal reflections of MgO. The crystalline reflections corresponding to MgSO<sub>3</sub> disappeared, while those corresponding to MgO increased in intensity. The observed weight loss from 300° to 535°C was about 26%. This result supports supports reaction (5). Because the crystalline peaks due to MgSO<sub>4</sub> were not detected in the XRD pattern, MgSO<sub>4</sub> exists in an amorphous state.

In the XRD at  $830^{\circ}$ C, there was seen a decrease in intensity of the amorphous peak, an increase in the reflection peaks of MgO and the appearance of the crystalline reflection peaks of MgSO<sub>4</sub>. There was observed a slight weight loss at about  $830^{\circ}$ C (Fig. 1).

Therefore, it seems than MgO exists as an amorphous structure at  $535^{\circ}$ C, while amorphous MgO and MgSO<sub>4</sub> are crystallized at  $830^{\circ}$ C. The TG curve of MgSO<sub>4</sub>·H<sub>2</sub>O showed a slight weight loss at about  $850^{\circ}$ C. Then, reaction (6) may occur.

$$MgSO_4 \rightarrow MgO + SO_3, \qquad SO_3 \rightarrow SO_2 + 1/2O_2 \qquad (6)$$

We used IR spectroscopy to examine the S–O bonding state of the thermal products at each temperature. Figure 4 shows the IR spectra of each product. There are two bands at 938 and 666 cm<sup>-1</sup> corresponding to the vibrations of  $SO_3^{2^-}$  in the spectra of the products at 400° and 440°C. These are in good agreement with the result by Lutz *et al.* [7]. These bands are assigned to an asymmetrical stretching vibration (v<sub>3</sub> SO<sub>3</sub>) and symmetrical bending vibration (v<sub>2</sub>SO<sub>3</sub>), respectively [8]. Considering these broad bands,  $SO_3^{2^-}$  may have several kinds of symmetry.

J. Thermal Anal., 38, 1992



Fig. 4 IR spectra of the products obtained by heating MgSO<sub>3</sub>·6H<sub>2</sub>O in air to indicated temperature a) 400°C, b) 440°C, c) 480°C, d) 535°C, e) 830°C

The spectrum of the product at 480°C is different from those at 400° and 440°C. That is,  $v_3SO_3$  became somewhat sharp and shifts to 929 cm<sup>-1</sup>. The new band observed at 1097 cm<sup>-1</sup> was assigned to the asymmetrical stretching vibration of  $SO_4^{2-}$  ( $v_3SO_4$ ). The bands due to MgO appeared strongly below 700 cm<sup>-1</sup>. It is recognized that  $SO_4^{2-}$  exists in the product. The infrared spectra of various sulfites and sulfates have been reported by several researchers [8–11]. These studies show that the free sulfite ion or the sulfur-coordinated sulfite has  $C_{3v}$  symmetry to be a pyramidal structure, in which the  $v_3SO_3$  and the  $v_4SO_3$  bands are doubly degenerated. When the sulfite ion is coordinated in a complex to possess Cs symmetry to be pyramidal structure, in which the  $v_3SO_4$  band is triply degenerated. When the sulfate ion is lowered to  $C_{3v}$ , this band

splits to two bands. In the case of  $C_{2v}$ , this band splits into three bands. In this spectrum, the splitting of  $v_3SO_3$  and  $v_3SO_4$  were not observed. Therefore, it is considered that  $SO_3^{2^-}$  approximately has  $C_{3v}$  symmetry to coordinate to the magnesium through the sulfur and the symmetry of  $SO_4^{2^-}$  is  $T_d$ . The crystallization of MgSO<sub>3</sub> can be attended by the sulfur-coordinated  $SO_3^{2^-}$  species. The IR band at 859 cm<sup>-1</sup> may arise from impurities which was ascribed to  $CO_3^{2^-}$ .

The IR spectrum of the product at 535°C showed that  $v_3SO_4$  shifted from 1097 cm<sup>-1</sup> to 1128 cm<sup>-1</sup> and became stronger, while  $v_3SO_3$  became weaker. This shows that  $SO_3^{2-}$  reacts to form  $SO_4^{2-}$  in which the S-O bonding is strengthened following decomposition of MgSO<sub>3</sub> to MgSO<sub>4</sub> and MgO, and the  $T_d$  symmetry of  $SO_4^{2-}$  is unchanged. In the spectrum of the product at 830°C, the peaks at 1239, 1178, 1110 and 1028 cm<sup>-1</sup> are due to sulfate, and they are attributed to  $v_3SO_4$  (1239, 1178 and 1110 cm<sup>-1</sup> bands) and a symmetrical stretching vibration of  $SO_4^{2-}$  ( $v_1SO_4$ , 1028 cm<sup>-1</sup>). This spectrum indicates that the symmetry of  $SO_4^{2-}$  is lowered to  $C_{2v}$  from  $T_d$  by the formation of an oxygen-coordinated species. The crystal growth of MgSO<sub>4</sub> may be accompanied by the formation of this  $SO_4^{2-}$  species.



Fig. 5 TG and DTA curves of SrSO<sub>3</sub> a) in Ar, b) in air

#### Thermal behaviour of SrSO3

TG and DTA curves of SrSO<sub>3</sub> in Ar and in air are shown in Fig. 5. In Ar, the small decrease in sample weight on the TG curve and the evolution of SO<sub>2</sub> in the

mass spectrum were observed below 400°C. This indicates that reaction (7) occurred.

$$SrSO_3 \rightarrow SrO + SO_2$$
 (7)

In the temperature range of  $400^{\circ}$  to  $700^{\circ}$ C in an Ar atmosphere, the TG curve and mass spectrum, in which the decrease in sample weight and the evolution of SO<sub>2</sub> were observed, indicated that reaction (7) also occurs. Lutz *et al.* [1] reported that the observation of an endothermic DTA peak at 560°C is attributed to the disproportionation reaction of the formation of SrSO<sub>4</sub> and SrS from SrSO<sub>3</sub>. But we did not observe this peak.

On the other hand, the TG and DTA curves in air are entirely different from



Fig. 6 IR spectra of (a) SrSO<sub>3</sub>, and (b) the product obtained by heating SrSO<sub>3</sub> in air to 865°C

those in the Ar atmosphere. A large increase in sample weight at about 600°C and the exothermic DTA peak were observed at about 580°C.

The IR spectrum of SrSO<sub>3</sub> and the product obtained by heating SrSO<sub>3</sub> up to 865°C are shown in Fig. 6. The IR data of SrSO<sub>3</sub> are in good agreement with that previously reported [1], in which the peaks at 522 and 498 cm<sup>-1</sup> are assigned to v<sub>4</sub>SO<sub>3</sub>. This indicates that the symmetry of SO<sub>3</sub><sup>2-</sup> is approximately  $C_s$ 

caused by the oxygen-coordinated species. According to Nyberg *et al.* [12], the sulfite ion is coordinated through the oxygen in strontium sulfite and barium sulfite. The results in this study support their explanation.

The crystalline peaks of  $SrSO_3$  in the XRD pattern in the product at  $865^{\circ}C$  and the exothermic peak in the DTA curve suggest that the oxidation reaction (8) occurs at these temperatures.

$$SrSO_3 + 1/2O_2 \rightarrow SrSO_4$$
 (8)

Only the IR peaks based on  $SO_4^{2-}$  were observed in the product at 865°C. Three peaks at 1209, 1138 and 1097 cm<sup>-1</sup> are attributed to v<sub>3</sub>SO<sub>4</sub>, showing that  $SO_4^{2-}$  is coordinated through the oxygen to the metal in the product.



Fig. 7 TG and DTA curves of  $Ba_x(SO_3)_z a$  in Ar, b) in air

#### Thermal behaviour of Ba<sub>x</sub>(SO<sub>3</sub>)<sub>2</sub>

The TG and DTA curves of  $Ba_x(SO_3)_z$  in Ar and in air are shown in Fig. 7. In the Ar atmosphere, a weight loss was observed below 500°C, suggesting that a small amount of water was contained in  $Ba_x(SO_3)_z$  as an impurity. The evolution of SO<sub>2</sub> was not observed in the mass spectrum. This suggests that the decomposition to BaO does not occur below 1000°C. Lutz *et al.* [1] observed the endothermic DTA peak at 545°C, and indicated the disproportionation reaction of the formation of BaSO<sub>4</sub> and BaS from BaSO<sub>3</sub>. However, this peak was not detected in this study.

The TG and DTA curves in air are different from those in Ar in which the increase in sample weight at 440° to 950°C and the corresponding exothermic DTA peaks were observed at 331°, 420°, 571°C, respectively. The thermal behaviour of  $Ba_x(SO_3)_z$  in air are entirely different from that in Ar. The observed weight loss below 440°C and the corresponding exothermic DTA peaks in air may be caused by the decomposition of impurities contained in  $Ba_x(SO_3)_z$ .

To investigate the chemical bonding of  $SO_3^{2-}$  and  $SO_4^{2-}$  during the reaction of  $Ba_x(SO_3)_z$ , the S-O bonding of the product formed at temperatures up to 830°C was examined. In the XRD pattern, the crystalline reflection peaks corresponding to BaSO<sub>4</sub> were observed, indicating that oxidation occurs.



Fig. 8 IR spectra of (a) Ba<sub>x</sub>(SO<sub>3</sub>)<sub>z</sub> and (b) the product obtained by heating Ba<sub>x</sub>(SO<sub>3</sub>)<sub>z</sub> in air to 830°C

IR measurements were carried out to investigate the S–O bonding in the  $Ba_x(SO_3)_z$  and the product at 830°C, and these spectra are shown in Fig. 8. In the IR spectrum of the prepared  $Ba_x(SO_3)_z$ , peaks of  $SO_3^{2-}$  and  $SO_4^{2-}$  were observed, suggesting that the  $SO_3^{2-}$  and  $SO_4^{2-}$  exist in  $Ba_x(SO_3)_z$ . The three split v<sub>3</sub>SO<sub>4</sub> modes (1181, 1128 and 1094 cm<sup>-1</sup>) indicate the formation of the oxygen-coordinated sulfate species. The peaks at 978 and 938 cm<sup>-1</sup> are assigned to the symmetrical stretching vibration of sulfite ion (v<sub>1</sub>SO<sub>3</sub>) and v<sub>3</sub>SO<sub>3</sub>, respectively. These are attributed to the  $C_{3v}$  pyramidal sulfite species.

In the spectrum of the product at 830°C, the peaks based on  $SO_4^{2-}$  increased their relative intensity, while those due to  $SO_3^{2-}$  decreased. The results correspond to the XRD results due to the oxidation from  $SO_3^{2-}$  to  $SO_4^{2-}$ . The v<sub>1</sub>SO<sub>3</sub> band (966 cm<sup>-1</sup>) and the split v<sub>3</sub>SO<sub>3</sub> band (945 and 936 cm<sup>-1</sup>) were observed. These indicate that the symmetry of  $SO_3^{2-}$  becomes  $C_s$  and the  $SO_3^{2-}$  is still remains coordinated through the oxygen to the metal. Although the  $SO_3^{2-}$  mainly has a sulfur-coordinated species of  $C_{3v}$  symmetry in Ba<sub>x</sub>(SO<sub>3</sub>)<sub>z</sub>, the SO<sub>3</sub><sup>2-</sup> becomes coordinated through the oxygen accompanying the oxidation reaction. The IR peaks attributed to v<sub>3</sub>SO<sub>4</sub> (1181, 1128 and 1094 cm<sup>-1</sup>) are slightly shifted from those in the spectrum for Ba<sub>x</sub>(SO<sub>3</sub>)<sub>z</sub> (1187, 1124 and 1087 cm<sup>-1</sup>). The v<sub>3</sub>SO<sub>4</sub> band is observed to be split into three modes, like as that in Ba<sub>x</sub>(SO<sub>3</sub>)<sub>z</sub>. Therefore, the product at 830°C possesses the oxygen-coordinated sulfate species, and the S–O bonding energy is different from that in Ba<sub>x</sub>(SO<sub>3</sub>)<sub>z</sub>.

#### Comparison of the thermal behaviour for each sulfite

Below 1000°C, SrSO<sub>3</sub> decomposes in Ar and is oxidized in air.  $Ba_x(SO_3)_z$  does not decompose in Ar but is oxidized in air similar to SrSO<sub>3</sub>. That is, for SrSO<sub>3</sub> and  $Ba_x(SO_3)_z$  the thermal behaviour in Ar are different from that in air. Concerning the thermal behaviour of CaSO<sub>3</sub>·1/2H<sub>2</sub>O, one of the alkaline-earth metal sulfites, we reported that the decomposition to CaO and the disproportionation reaction that forms CaSO<sub>4</sub> and CaS from CaSO<sub>3</sub> below 1000°C, are observed in nitrogen (N<sub>2</sub>) gas and the oxidation of CaSO<sub>3</sub> mainly occurs in air or in the mixture of N<sub>2</sub> and O<sub>2</sub> [13, 14]. The thermal behaviour of CaSO<sub>3</sub>·1/2H<sub>2</sub>O in N<sub>2</sub> is also different from that in air. Therefore, SrSO<sub>3</sub> and Ba<sub>x</sub>(SO<sub>3</sub>)<sub>z</sub> show a similar thermal behaviour to that for CaSO<sub>3</sub>·1/2H<sub>2</sub>O. For MgSO<sub>3</sub>·6H<sub>2</sub>O, the thermal behaviour in Ar is similar to that in air, in which the oxidation of MgSO<sub>3</sub> is not observed below 1000°C. This indicates that MgSO<sub>3</sub>·6H<sub>2</sub>O usually exhibits a different thermal behaviour from the others and the sample is not oxidized.

## Comparison of the chemical bonding state of the sulfite ion in the thermal products in air

The bonding structures of  $SO_3^{2-}$  in sulfites of magnesium, strontium and barium are summarized in Fig. 9.

IR spectra indicate that  $SrSO_3$  and  $Ba_x(SO_3)_z$  begins to have an oxygen-coordinated sulfite species due to the oxidation. It is known that the  $SO_3^{2^-}$  is also



Fig. 9 Bonding state of  $SO_2^{2-}$  in each sulfite *a*) magnesium sulfite, *b*) strontium sulfite, c) barium sulfite

coordinated through the oxygen in  $CaSO_3 \cdot 1/2H_2O$  [3]. That is, the  $SO_3^{2-}$  of calcium, strontium and barium sulfites becomes coordinated through the oxygen to the metal. In magnesium sulfite, however, the  $SO_3^{2-}$  is coordinated through the sulfur to the metal at temperatures up to  $830^{\circ}C$ , at which time  $SO_3^{2-}$  disappeared in the IR spectrum. The bonding state of  $SO_3^{2-}$  in the thermal products from MgSO<sub>3</sub>·6H<sub>2</sub>O is different from those from the others. It is thought that the  $SO_3^{2-}$  coordinated through the oxygen is usually oxidized easier than that coordinated through the sulfur.

It is well known that the differences in the chemical properties between the beryllium and magnesium compounds and the other alkaline-earth metal compounds are caused by their small ionic radius and the high value of their second ionization potential [15]. The reason why the bonding state of the  $SO_3^{2-}$  for magnesium sulfite differs from that for the others in this study may be based on these considerations.

#### Conclusions

The thermal behaviour of the sulfite of magnesium, strontium and barium were investigated at temperatures up to 1000°C in Ar and in air.

For magnesium sulfite, the thermal behaviour in Ar is similar to that in air, and the thermal decomposition to MgSO<sub>4</sub> and MgO from MgSO<sub>3</sub> takes place below 500°C. For strontium sulfite, the thermal decomposition to SrO occurs somewhat in Ar, while the oxidation to SrSO<sub>4</sub> naturally occurs in air. For barium

1813

sulfite  $(Ba_x(SO_3)_z)$ , the thermal decomposition does not occur in Ar, while in air the oxidation occurs. The different kinds of atmosphere produces a different thermal behaviour for strontium sulfite and barium sulfite, and these sulfites show a similar thermal behaviour tendency. On the other hand, the oxidation of magnesium sulfite does not occur in air, which is different from the thermal behaviour for calcium, strontium and barium sulfites.

The bonding structure of the  $SO_3^{2^-}$  in the thermal products obtained in air have been examined. The  $SO_3^{2^-}$  is coordinated through the sulfur to the metal in magnesium sulfite. The  $SO_3^{2^-}$  in strontium sulfite is the oxygen-coordinated species. In  $Ba_x(SO_3)z$ , the  $SO_3^{2^-}$ , first, is mainly coordinated through the sulfur, but with further oxidation it becomes an oxygen-coordinated sulfite species. It turns out that magnesium sulfite has a different bonding structure for the  $SO_3^{2^-}$ as compared to the others.

\* \* \*

We wish to thank Mr. K. Takahashi of MAC Science Inc. for TG and DTA measurements, mass spectra in Ar and his valuable discussions.

#### References

- 1 V. H. D. Lutz and S. E. Suradi, Z. Allg. Anorg. Chem., 425 (1976) 134.
- 2 Y. Saeki, R. Matsuzaki, T. Kobayashi and H. Masumizu, Gypsum Lime, 159 (1979) 59.
- 3 M. Ishihara, H. Matsui and G. Hashizume, Nippon Kagaku Kaishi, 10 (1991) 1249.
- 4 W. D. Harrison, J. B. Gill and D. C. Goodall, Polyhed., 2 (1983) 153.
- 5 V. H. D. Lutz, S. E. Suradi and B. Engelen, Z. Naturforsch., Teil B, 32 (1977) 1230.
- 6 J. W. Mellor, A Comprehensive Treatise on Inorganic and Theoretical Chemistry, Vol. X, Longmans, Green and Co., London, New York, Toronto 1930, p. 285.
- 7 V. P. Verma, Thermochim. Acta, 89 (1985) 363.
- 8 J. P. Hall and W. P. Griffith, Inorg. Chim. Acta, 48 (1981) 65.
- 9 K. Nakamoto, J. Fujita, S. Tanaka and M. Kobayashi, J. Amer. Chem. Soc., 79 (1957) 4904.
- 10 E. Steger, W. Schmidt and B. Bunseges, J. Phys. Chem., 68 (1964) 102.
- 11 M. M. Thompson and R. A. Palmer, Appl. Spectrosc., 68 (1988) 945.
- 12 B. Nyberg and R. Larsson, Acta Chem. Scand., 27 (1973) 63.
- 13 S. Aoki, E. Sawamura and Y. Arai, Gypsum Lime, 142 (1976) 95.
- 14 M. Yamada, H. Matsui and G. Hashizume, Gypsum Lime, 227 (1990) 7.
- 15 for example, F. A. Cotton and G. Wilkinson, Basic Inorganic Chemistry, John Wiley & Sons, Inc., New York 1976.

Zusammenfassung In Luft und in Argon wurde das thermische Verhalten von Magnesiumsulfit, Strontiumsulfit und Bariumsulfit untersucht. Dabei zeigte Magnesiumsulfit ein anderes Verhalten als die beiden anderen Sulfite. Bei Magnesiumsulfit findet an Luft keine Oxidation statt. Weiterhin wurde der Bindungszustand von  $SO_3^{2^-}$  in den einzelnen Sulfiten miteinander verglichen.  $SO_3^{2^-}$  im Magnesiumsulfit ist über den Schwefel und in den anderen Sulfiten über den Sauerstoff koordiniert.

Die Unterschiede im thermischen Verhalten von Magnesiumsulfit und den übrigen Sulfiten scheinen vom unterschiedlichen Bindungszustand von SO3<sup>-</sup> abzuhängen.